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Abstract

Key-value stores, such as Memcached, have been used to
scale web services since the beginning of the Web 2.0 era.
Data center real estate is expensive, and several industry ex-
perts we have spoken to have suggested that a significant
portion of their data center space is devoted to key-value
stores. Despite its wide-spread use, there is little in the way
of hardware specialization for increasing the efficiency and
density of Memcached; it is currently deployed on commod-
ity servers that contain high-end CPUs designed to extract
as much instruction-level parallelism as possible. Out-of-
order CPUs, however have been shown to be inefficient when
running Memcached.

To address Memcached efficiency issues, we propose two
architectures using 3D stacking to increase data storage
efficiency. Our first 3D architecture, Mercury, consists of
stacks of ARM Cortex-A7 cores with 4GB of DRAM, as well
as NICs. Our second architecture, Iridium, replaces DRAM
with NAND Flash to improve density. We explore, through
simulation, the potential efficiency benefits of running Mem-
cached on servers that use 3D-stacking to closely integrate
low-power CPUs with NICs and memory. With Mercury we
demonstrate that density may be improved by 2.9, power
efficiency by 4.9x, throughput by 10X, and throughput per
GB by 3.5 x over a state-of-the-art server running optimized
Memcached. With Iridium we show that density may be in-
creased by 14x, power efficiency by 2.4X, and throughput
by 5.2x, while still meeting latency requirements for a ma-
Jjority of requests.
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1.

Since the emergence of the Web 2.0 era, scaling web services
to meet the requirements of dynamic content generation
has been a challenge—engineers quickly discovered that
creating content for each visitor to a web site generated a
high load on the back-end databases. While it is easy to scale
the number of servers generating HTML and responding to
client requests, it is harder to scale the data stores. This two-
tier infrastructure becomes increasingly difficult to scale and
requires many redundant systems to prevent a single point
of failure. In order to meet the performance and reliability
requirements of handling such a massive volume of data,
highly distributed scale-out architectures are required.

Memcached is one example of a distributed, in-memory
key-value store caching system. Memcached is used as the
primary piece of scaling infrastructure for many of today’s
most widely-used web services, such as Facebook, Twitter,
and YouTube; although not prepared to go on the record, sev-
eral industry experts we’ve spoken with have estimated that
approximately 25% of their data center is dedicated to key-
value stores. Due to its wide-spread use, and the high cost
of data center real estate, it is important that Memcached be
run as efficiently as possible. Today, however, Memcached
is deployed on commodity hardware consisting of aggres-
sive out-of-order cores, whose performance and efficiency
are measured with respect to how well they are able to run
CPU benchmarks, such as SPEC [17].

Realizing that aggressive out-of-order cores are not an ef-
ficient choice for many classes of server applications, sev-
eral studies have advocated the use of low-power embed-
ded CPUs in data centers: [2, 23, 28, 38]. There are chal-
lenges with this approach as well—embedded cores are un-
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Figure 1: Configurations with 2 and 3 layers behind a vip to service web requests.

able to provide the throughput and latency guarantees that
are required to supply responsive dynamic content. More re-
cently, Lim et al. [29] have shown that mobile cores alone
are not enough to improve the efficiency of distributed key-
value store caching systems. Instead, they create a custom
Memcached accelerator, and rely on recent technology scal-
ing trends to closely integrate their accelerator into a system-
on-chip (SoC) design they call Thin Servers with Smart
Pipes (TSSP). These approaches may improve overall en-
ergy and performance, however they do not address density.
Dense servers, on the other hand, have been shown to pro-
vide greater efficiency for CPU-bound electronic commerce
workloads in the past [10], however for workloads that re-
quired large amounts of memory, traditional servers were
found to be a better solution.

We take the notion of an efficient, integrated system one
step further to include density as a primary design con-
straint. We propose two integrated 3D-stacked architectures
called Mercury and Iridium'. With Mercury we are able
to tightly couple low-power ARM Cortex-A7 cores with
NICs and DRAM, while maintaining high bandwidth and
low latency. Recently, Facebook introduced McDipper [13],
a Flash-based Memcached server using the observation that
some Memcached servers require higher density with simi-
lar latency targets, but are accessed at much lower rates. To
address these types of Memcached servers we introduce Irid-
ium, a Flash based version of Mercury that further increases
density at the expense of throughput while still meeting la-
tency requirements. These two architectures allow density to
be significantly increased, resulting in more effective use of
costly data center space.

In summary we make the following contributions:

e Given data center costs, we contend that server density
should be considered a first-class design constraint.

® We propose Mercury, an integrated, 3D-stacked DRAM
server architecture which has the potential to improve

! Mercury, the Roman god, is extremely fast, while the element of the same
name is very dense. Iridium, while not a god, is more dense than mercury.
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density by 2.9 x, making more efficient use of costly data
center space.

¢ By closely coupling DRAM and NICs with low-power
Cortex-A7 cores, we show that it is possible to improve
power efficiency by 4.9 x.

® By increasing density, and closely coupling DRAM,
NICs, and CPUs, it is possible to increase transactions
per second (TPS) by 10x and TPS/GB by 3.5x.

¢ Finally, we propose Iridium for McDipper [13] style
Memcached servers, which replaces the DRAM with
NAND Flash to improve density by 14, TPS by 5.2,
and power efficiency by 2.4 x, while still maintaining la-
tency requirements for a bulk of requests. This comes at
the expense of 2.8 x less TPS/GB due to the much higher
density.

The rest of this paper is organized as follows: in Section 2 we
motivate the need for efficient Memcached servers; related
work is presented in Section 3; our proposed architectures,
Mercury and Iridium, are described in Section 4; in Section
5 we outline our experimental methodology; results are pre-
sented in Section 6; finally, we provide concluding remarks
in Section 7.

2. Background and Motivation
2.1 Cloud Computing Design

Figure 1a shows the design of a standard web server setup.
A load balancer typically has one or more virtual-IPs (VIP)
configured. Each domain is routed by a DNS to a particular
load balancer, where requests are then forwarded to a free
server. After the load balancer a fleet of front-end servers
service the web request. If needed, these web servers will
contact a back-end data store to retrieve custom content
that pertains to the user, which means that all servers could
connect to the back-end data store.

In Figure 1b a caching layer is added, which can service
any read request that hits in the cache. A request will first be
forwarded to the caching layer on any read. If the requested
data is present, the caching layer returns its copy to the



client. If the data is not present, a query will be sent to
the back-end data store. After the data returns, the server
handling the request will issue a write to the caching layer
along with the data. Future requests for that data can then
be serviced by the caching layer. All write requests are sent
directly to the back-end data store. Updating values in the
caching layer depends on how it is configured. The two most
common cases are that writes are duplicated to the caching
layer or a time-to-live is placed on data in the caching layer.

2.2 Scaling in the Cloud

In general, the traffic to a website varies by the time of day
and time of year. Data published by Netflix [35] demon-
strates how traffic to their site varies over a three day period.
As their data shows, traffic peaks during midday, and is at its
lowest point around midnight. They also quantify the cor-
responding number of front-end servers needed to maintain
equal load throughout the day, which tracks closely with the
traffic. While this is easy to do for front-end servers, because
they maintain little state, back-end data stores are not easily
scaled up and down. Netflix overcomes this problem by the
extensive use of caching, which is a cheaper solution than
scaling back-end data stores.

While turning on and off servers helps save power, it
does not help reduce space because the servers must still be
physically present in order to meet peak demand. To cope
with the physical demands of scaling, new data centers must
be built when a given data center is either over its power
budget, or out of space. A recent report states Google is
spending 390 million USD to expand their Belgium data
center [37]. Facebook also has plans to build a new 1.5
billion USD center in Iowa[32]. Because of this high cost,
it is critical to avoid scaling by means of simply building
new data centers or increasing the size of existing ones. This
paper focuses on increasing physical density within a fixed
power budget in order to reduce the data center footprint of
key-value stores.

2.3 Memcached

In this paper we use Memcached 1.4 as our key-value store.
We choose Memcached as our key-value store because of
its widespread use in cloud computing. Memcached does
not provide data persistence and servers do not need to
communicate with each other, because of this it achieves
linear scaling with respect to nodes. To date, the largest
Memcached cluster with published data was Facebook’s,
which contained over 800 servers and had 28TB of DRAM
in 2008 [45].

The ubiquity of Memcached stems from the fact that it is
easy to use, because of its simple set of verbs. Only three
details about Memcached need to be understood: first, it is
distributed, which means that not every key will be on every
server. In fact, a key should only be on one server, which
allows the cluster to cache a large amount of data because
the cache is the aggregate size of all servers. Second, the
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cache does not fill itself. While this may seem intuitive,
the software using Memcached needs to ensure that after
a read from the database, the data is stored in the cache
for later retrieval. Entering data in the cache uses a PUT,
and retrieving data from the cache uses a GET. Lastly, there
are several options to denote when data expires from the
cache. Data can either have a time-to-live, or be present in
the cache indefinitely. A caveat to using Memcached is that
data will be removed from your cache if a server goes down
as Memcached does not have persistent storage.

2.3.1 Versions and Scaling

There are several versions of Memcached: the current sta-
ble release is 1.4, and 1.6 is under development. Version 1.6
aims to fix scaling issues caused by running Memcached
with a large number of threads. A detailed analysis is pre-
sented in [43]. Prior research has shown that Memcached
saturates neither the network bandwidth, nor the memory
bandwidth [29], due to inefficiencies in the TCP/IP stack.
In this work, we distribute the work of the TCP/IP stack
among many small cores to provide greater aggregate band-
width while increasing the storage density. This is possible
because 3D stacking provides higher bandwidth and a faster
memory interface.

3. Related Work

Prior work has focused on increasing the efficiency or per-
formance with respect to the transactions per second (TPS)
of Memcached systems, rather than density. As previously
mentioned, we believe that density should be studied as a
first class design constraint due to the high cost of scaling
out data centers.

3.1 Characterizing Cloud Workloads

Ferdman et al. have demonstrated the mismatch between
cloud workloads and modern out-of-order cores [11, 12].
Through their detailed analysis of scale-out workloads on
modern cores, they discovered several important charac-
teristics of these workloads: 1) Scale-out workloads suffer
from high instruction cache miss rates, and large instruc-
tion caches and pre-fetchers, are inadequate; 2) instruction
and memory-level parallelism are low, thus leaving the ad-
vanced out-of-order core underutilized; 3) the working set
sizes exceed the capacity of the on-chip caches; 4) band-
width utilization of scale-out workloads is low.

3.2 Efficient 3D-Stacked Servers

Prior work has shown that 3D stacking may be used for
efficient server design. PicoServer [23] proposes using 3D
stacking technology to design compact and efficient multi-
core processors for use in tier 1 servers. The focus of the Pi-
coServer is on energy efficiency—they show that by closely
stacking low-power cores on top of DRAM they can remove
complex cache hierarchies, and instead, add more low-power



Component Power (mW) Area (mm2)
A7@1GHz 100 0.58
Al5@1GHz 600 2.82
Al15@1.5GHz 1,000 2.82
3D DRAM (4GB) 210 (per GB/s) 279.00
3D NAND Flash (19.8GB) 6 (per GB/s) 279.00
3D Stack NIC (MAC) 120 0.43
Physical NIC (PHY) 300 220.00

Table 1: Power and area for the components of a 3D stack.

cores. The improved memory bandwidth and latency allow
for adequate throughput and performance at a significant
power savings. Nanostores [9] build on the PicoServer de-
sign and integrate Flash or Memristors into the stack. Both
PicoServer and Nanostores could be used in a scale-out fash-
ion to improve density, although this was not addressed in
the work. This paper builds on their designs to address den-
sity, particularly in the context of Memcached.

More recently, Scale-Out Processors [30] were proposed
as a processor for cloud computing workloads. The Scale-
Out Processor design uses 3D stacked DRAM as a cache
for external DRAM and implements a clever prefetching
technique[19]. Our designs differ in that we only use the on-
chip DRAM or Flash for storage with no external backing
memory. This is possible because we share the Memcached
data over several independent stacks in the same 1.5U box.

3.3 Non-Volatile Memory File Caching in Servers

In addition to Nanostores, several prior studies have pro-
posed using non-volatile memory for energy-efficiency in
servers [22, 24, 39]. They propose using non-volatile mem-
ory (NAND Flash and phase-change memory) for file caching
in servers. The use of a programmable Flash memory con-
troller, along with a sophisticated wear-leveling algorithm,
allow for the effective use of non-volatile memory for file
caching, while reducing idle power by an order of magni-
tude.

3.4 Super Dense Servers

Super Dense Servers (SDS) [10] have been shown to pro-
vide greater performance and efficiency for CPU-bound
electronic commerce workloads. However, for workloads
that require a large amount of physical memory—such as
Memcached—traditional servers provided a better solution.
By utilizing state-of-the-art 3D-stacked memory technology,
we overcome the limitation of SDS by providing a very high
level of memory density in our proposed server designs.

3.5 McDipper

Memcached has been used at Facebook for a wide range of
applications, including MySQL look-aside buffers and photo
serving. Using DRAM for these applications is relatively
expensive, and for working sets that have very large foot-
prints but moderate to low request rates, more efficient solu-
tions are possible. Compared with DRAM, Flash solid-state
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DRAM BW (GB/s) Capacity
DDR3-1333 [36] 10.7 2GB
DDR4-2667 [36] 21.3 2GB
LPDDR3 (30nm) [4] 6.4 512MB
HMC I (3D-Stack) [36] 128.0 512MB
Wide I/O (3D-stack, 50nm) [25] 12.8 512MB
Tezzaron Octopus (3D-Stack)[1] 50.0 512MB
Future Tezzaron (3D-stack)[14] 100.0 4GB

Table 2: Comparison of 3D-stacked DRAM to DIMM packages.

drives provide up to 20x the capacity per server and still
supports tens of thousands of operations per second. This
prompted the creation of McDipper, a Flash-based cache
server that is compatible with Memcached. McDipper has
been in active use in production at Facebook for nearly a
year to serve photos [13]. Our Iridium architecture targets
these very large footprint workloads which have moderate
to low request rates. We further extend their solution by us-
ing Toshiba’s emerging 16-layer pipe-shaped bit cost scal-
able (p-BiCS) NAND Flash [21], which allows for density
increases on the order of 5x compared to 3D-DRAM.

3.6 Enhancing the Scalability of Memcached

Wiggins and Langston [43] propose changes in Memcached
1.6 to remove bottlenecks that hinder performance when
running on many core systems. They find that the locking
structure used to control access to the hash table and to main-
tain LRU replacement for keys hinders Memcached when
running with many threads. To mitigate the lock contention
they use fine grain locks instead of a global lock. In addition,
they modify the replacement algorithm to use a pseudo LRU
algorithm, which they call Bags. Their proposed changes in-
crease the bandwidth to greater than 3.1 MTPS, which is
over 6x higher than an unmodified Memcached implemen-
tation.

3.7 TSSP

Lim et al. propose TSSP [29], which is an SoC including
a Memcached accelerator to overcome the need for a large
core in Memcached clusters. They find that, due to the net-
work stack, Intel Atom cores would not be able to replace
Intel Xeons in a standard cluster configuration. TSSP is able
to offload all GET requests from the processor to the accel-
erator. The offload is accomplished by having a hash table
stored in hardware and having a smart NIC that is able to
forward GET requests to the accelerator. After data for a key
is found, the hardware generates a response. Because little
work needs to be done by software, an ARM Cortex-A9 is
a suitable processor. The TSSP architecture achieves 17.63
KTPS/Watt.

3.8 Resource Contention in Distributed Hash Tables

Distributed hash tables (DHT) can suffer from issues that
arise because there is not a uniform distribution of requests
across resources. Keys in a key value store are assigned a
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resource by mapping a key onto a point in a circle. From this
circle each node is assigned a portion of the circle, or arc.
A server is responsible to store all data for keys that map
onto their arc. Prior work dealing with resource contention
in DHTs shows that increasing the number of nodes in the
DHT reduces the probability of resource contention, because
each node is responsible for a smaller arc [20, 41]. Typically,
increasing the number of nodes has been accomplished by
assigning one physical node to several virtual nodes. These
virtual nodes are then distributed around the circle, which
results in a more uniform utilization of resources. Because
we increase the number of physical cores with Mercury and
Iridium, resource contention should be minimized.

3.9 TILEPro64

Berezecki et al. [6] focus on adapting Memcached to run on
the TILEPro64. In this work they cite power consumption
of data centers as an important component for the success
of a web service. With this in mind, they aim to improve
the efficiency of Memcached by running it on a TILEPro64.
They compare their implementation to both Opteron and
Xeon processors running Memcached, and report an TPS/W
of 5.75KTPS/W, which is an improvement of 2.85x and
2.43 x respectively.

3.10 FAWN

Andersen et al. design a new cluster architecture, called
FAWN, for efficient, and massively parallel access to data
[2]. They develop FAWN-KV—an implementation of their
FAWN architecture for key-value stores that uses low-power
embedded cores, a log-structured datastore, and Flash mem-
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ory. With FAWN-KYV they improve the efficiency of queries
by two orders of magnitude over traditional disk-based sys-
tems. The FAWN system focuses on the key-value and
filesystem design, whereas our work focuses on designing
very dense servers.

4. Mercury and Iridium

The Mercury and Iridium architectures are constructed by
stacking ARM Cortex-A7s, a 10GbE NIC, and either 4GB
of DRAM or 19.8GB of Flash into a single 3D stack. The
MAC unit of the NIC, which is located on the 3D stack, is
capable of routing requests to the A7 cores. A conceptual
representation is presented in Figure 2a. To evaluate the use
of 3D stacks with key-value stores, we vary the number
of cores per stack and measure the throughput and power
efficiency for each server configuration. We designate the
different architectures as Mercury-n or Iridium-n, where n
is the number of cores per stack. We estimate power and area
requirements based off of the components listed in Table 1.

4.1 Mercury

While the primary goal of Mercury and Iridium is to increase
data storage density, this cannot be done at the expense of
latency and bandwidth—the architecture would not be able
to meet the service-level agreement (SLA) requirements that
are typical of Memcached clusters. Thus we utilize low-
power, in-order ARM Cortex-A7 cores in our 3D-stacked
architecture, and as we will show in section 6, we are able
to service a majority of requests within the sub-millisecond
range.
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4.1.1 3D Stack

The proposed Mercury architecture relies on devices from
Tezzeron’s 3D-stacking process [40]. This process allows
us to stack 8 memory layers on a logic die through finely-
spaced (1.75um pitch), low-power through silicon vias
(TSV). The TSVs have a feedthrough capacitance of 2-3fF
and a series resistance of < 3. This allows as much as 4GB
of data in each individual stack.

The 4GB stack’s logical organization is shown in Fig-
ure 3a. Each 4GB 3D chip consists of eight 512MB DRAM
memory dies stacked on top of a logic die. The organization
of the DRAM die is an extension [14] of Tezzaron’s existing
Octopus DRAM solution [1]. Each 3D stack has 16 128-bit
data ports, with each port accessing an independent 256MB
address space. Each address space is further subdivided into
eight 32MB banks. Each bank, in turn, is physically orga-
nized as a 64x64 matrix of subarrays. Each subarray is a
256 x256 arrangement of bit cells, and is 60pmx35um.

Figure 3b shows the physical floor plan of each DRAM
memory die and the logic die. The logic die is fabricated
in a 28nm CMOS process and consists of address-decoding
logic, global word line drivers, sense amplifiers, row buffers,
error correction logic, and low-swing I/O logic with pads.
Each memory die is partitioned into 16 ports with each port
serving 1 of the 16 banks on a die. The memory die is fabri-
cated in a 50nm DRAM process and consists of the DRAM
subarrays along with some logic, such as local wordline
drivers and pass-gate multiplexers.

While there are more advanced DRAM processes (e.g.
20nm), TSV yield in existing 3D-stacked prototypes has
only been proven up to the 50nm DRAM process node
[25, 36]. All subarrays in a vertical stack share the same
row buffer using TSVs, and at most one row of subarrays
in a vertical stack can have its contents in the row buffer,
which corresponds to a physical page. Assuming an 8kb
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page, a maximum of 2,048 pages can be simultaneously
open per stack (128 8kb pages per bank x 16 banks per
physical layer). The device provides a sustained bandwidth
of 6.25GB/s per port (100GB/s total).

4.1.2 Address Space

The 3D stack DRAM has 16 ports for memory access, this
segments the 4GB stack into 256MB chunks. Each core is
allocated one or more ports for memory access, which pre-
vents Memcached processes from overwriting each other’s
address range. If the Mercury or Iridium architectures in-
crease past 16 cores, additional ports would need to be
added, or cores would need to share ports.

4.1.3 Memory Access

Other studies have shown that small cores alone are not able
to provide the needed bandwidth to be useful in key-value
stores [29]. Mercury differs from this research because it is
coupled with a memory interface that provides higher band-
width at a lower latency through 3D integration. For com-
parison, Table 2 shows the bandwidth and capacity of sev-
eral current and emerging memory technologies. Coupling
cores on the 3D stack allows Mercury to forego using an L2
cache, which prior research has shown to be inefficient [29],
and issue requests directly to memory. The 3D DRAM has a
closed page latency of 11 cycles at IGHz. By having a faster
connection to memory we mitigate the cache thrashing by
the networking stack reported in [29].

4.1.4 Request Routing

To simplify design and save power we do not use a router
at the server level. Instead, the physical network port is tied
directly to a 3D stack. This allows for each stack to act as a
single node, or multiple nodes, without having contention
from other stacks. At the stack, we base our design off
of the integrated NIC on the Niagra-2 chip [5, 26]. The



integrated NIC is capable of buffering a packet and then
forwarding it to the correct core. Cores on the same stack
will need to run Memcached on different TCP/IP ports. This
simplifies request routing on the stack. The physical port
(PHY) portion of the 10GbE is based on the Broadcom
design [8] and is not located on the stack.

4.2 Iridium

Due to the high cost of server real estate, physical density is
first-class design constraint for key-value stores. Facebook
has developed McDipper [13], which utilizes Flash mem-
ory to service low-request-rate transactions while improving
density by up to 20x. McDipper has been in use for over a
year to service photos at Facebook. With Iridium we target
these low-request-rate applications and explore the tradeoff
between physical density and throughput by replacing the
DRAM in a Mercury stack with NAND Flash memory. This
comes at the expense of throughput per GB of storage, but is
still applicable to low-request-rate high-density Memcached
clusters, such as Facebook’s photo server.

4.2.1 3D Stacked Flash

McDipper reported an increase in density by 20x when
moving from DRAM DIMMs to Solid-State drives. Because
the Mercury design already improved density through 3D-
DRAM we will not see as significant a gain. To quantify
the improvement in the density of the stack we estimate our
Flash density using the cell sizes of Toshiba’s emerging pipe-
shaped bit cost scalable (p-BiCS) NAND Flash [21]. Flash
cells are smaller than DRAM cells, offering a 2.5 increase
in density. Because p-BiCS has 16 layers of 3D Flash?, as
opposed to 8 layers for 3D-stacked DRAM, this leads to an
overall 4.9 increase in density for Iridium stacks. For our
access organization we maintain Mercury’s 16 separate ports
to DRAM by including 16 independent Flash controllers.
The read/write latency values and energy numbers used for
simulation are drawn from [15], which are conservative for
3D-stacked Flash. The power and area numbers for Flash
are shown in table 1. In addition, because the Flash latency
is much longer, an L2 cache is needed to hold the entire
instruction footprint. Our results in Section 6.2 will confirm
this assumption.

5. Methodology

The following sections describe our Memcached setup, as
well as our simulation framework and power models.
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For our experiments we utilize the latest stable version of
Memcached cross-compiled for the ARM ISA. We modify
our simulation infrastructure, which will be described in the

Memcached

2 The 16 Flash layers are contained in a single monolithic layer of 3D Flash,
and are not 3D die-stacked.
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next section, to collect timing information. We do this, as
opposed to using library timing functions such as gettimeof-
day(), because they do not perturb the system under test. All
experiments are run with a single Memcached thread.

For our client we use an in-house Java client that is
based on the work by Whalin [42]. Because we measure
performance from the server-side, the overhead of running
Java is not included with the measurements.

5.2 Simulation Infrastructure

To calculate the request rates that Mercury and Iridium are
able to achieve, we used the gemS5 full-system simulator
[7]. With gem5, we are able to model multiple networked
systems with a full operating system, TCP/IP stack, and
Ethernet devices. We use Ubuntu 11.04 along with ver-
sion 2.6.38.8 of the Linux kernel for both the server and
client systems. For our client-side Java VM, we use Java SE
1.7.0_04-ea from Oracle.

While Mercury and Iridium both utilize ARM Cortex-A7
cores, we also explore the possibility of using the more ag-
gressive, out-of-order Cortex-Al5 core by modelling both
cores in our simulation infrastructure. Simulations use a
memory model with a memory latency varied from 10-
100ns for DRAM and 10-20us for Flash Reads. Our mem-
ory model represents a worst-case estimate as it assumes a
closed-page latency for all requests. To measure the TPS we
vary request size from 64B to 1MB, doubling request size at
each iteration. We do not consider values greater than 1MB
for the following reasons: 1) Memcached workloads tend to
favor smaller size data; 2) prior work [3, 29, 43], against
which we compare, present bandwidth per watt at data sizes
of 64B and 128B; and, 3) requests that are 64KB or larger
have to be split up into multiple TCP packets.

5.3 TPS calculation

To calculate the TPS we collect the round-trip time (RTT) for
arequest, i.e., the total time it takes for a request to go from
the client to the server, then back to the client. Because we
use only a single thread for Memcached, the TPS is equal to
the inverse of the RTT. The RTT for each request is obtained
by dumping TCP/IP packet information from gem5’s Ether-
net device models. The packet trace is run through TShark
[44] to parse out timing information. After timing informa-
tion is obtained from gem5 for a single core, we apply linear
scaling to calculate TPS at the stack and server level. Lin-
ear scaling is a reasonable approach in this context because
each core on a stack is running a separate instance of Mem-
cached. Running separate instances avoids the contention is-
sue raised by the work of Wiggins and Langston[43]. For the
Mercury-32 and Iridium-32 configurations we use the same
approach, however we assume two cores per memory port
(as mentioned previously we can fit a maximum of 16 mem-
ory ports on a stack), because Memcached has been shown
to scale well for two threads [43].



1.5U Mercury Server 1.5U Iridium Server

Number of Cores per Stack 1 2 4 8 16 32 1 2 4 8 16 32

~  Area(cm?) 635 635 576 331 179 86 635 635 635 363 185 93

ka] % Power(W) 449 569 749 750 750 720 328 449 690 740 737 730
<% Density(GB) 384 384 348 200 108 52 1,901 1,901 1,901 1,089 554 277
~  Max BW(GB/s) 27 55 99 114 123 118 1 3 6 7 7 7

< Area(cm?) 635 635 635 496 278 139 635 635 635 595 304 152
Y= Power(W) 401 473 618 745 742 728 281 353 498 750 740 728
<9 Density(GB) 384 384 384 300 168 84 | 1,901 1,901 1,901 1,782 911 455
Max BW(GB/s) 27 54 108 169 189 189 2 3 6 11 11 11

N Area(cm?) 635 635 635 635 635 616 635 635 635 635 635 635

=~ T Power(W) 341 353 378 429 529 749 221 233 258 309 410 612
<9 Density(GB) 384 384 384 384 384 371 1,901 1,901 1,901 1,901 1,901 1,901
Max BW(GB/s) 19 37 75 149 299 578 1 3 [ 12 22 44

Table 3: Power and area comparison for 1.5U maximum configurations. For each configuration we utilize the maximum number of stacks
we can fit into a 1.5U server, which is 96, or until we reach our power budget of 75S0W. The power and bandwidth numbers are the maximum

values we observed when servicing requests from 64B up to IMB.

5.4 Power Modeling

Table 1 has a breakdown of power per component, and Ta-
ble 3 has the cumulative power totals for each configuration
of Mercury and Iridium at their maximum sustainable band-
widths. To calculate the power of an individual stack we add
together the power of the NIC, cores, and memory. The in-
tegrated 10GbE NIC is comprised of a MAC and buffers.
The MAC power estimates come from the Niagra-2 design
[5, 26], and the buffers are estimated from CACTI [34]. The
ARM Cortex-A7 and Cortex-A15 power numbers are drawn
from [16], and the 3D DRAM is calculated from a technical
specification obtained from Tezzaron [14]. Because DRAM
active power depends on the memory bandwidth being used,
we must calculate the stack power for the maximum band-
width that a given number of cores can produce. Similar cal-
culations are used to obtain NAND Flash power, which use
read and write energy values drawn from [15]. Finally, each
stack requires an off-stack physical Ethernet port. Power
numbers for the PHY are based on a Broadcom part [8].

5.4.1 Power Budget for 1.5U Mercury System

In calculating the power for the 1.5U server system we
multiply the per stack power by the number of stacks. To
determine how many stacks can fit in a 1.5U power budget,
we start with a 750W power supply from HP [18]. First
160W is allotted for other components (disk, motherboard,
etc.), after this we assume a conservative 20% margin for
miscellaneous power and delivery losses in the server. This
results in a maximum power of (750 — 160) x 0.8 = 472W
for Mercury or Iridium components.

5.4.2 TPS/Watt calculation

When calculating the maximum number of 3D stacks that
fit in a system, we used the maximum memory bandwidth
that Mercury and Iridium can produce. However, for proper
TPS/Watt calculation, we estimate power by using the GB/s
power consumption of DRAM and Flash at the request size
we are testing.

492

5.5 Area

Area estimates for the 10GbE NIC were obtained by scaling
the Niagra-2 MAC to 28nm and the buffers were obtained
from CACTI. The area for an ARM Cortex-A7 chip in 28nm
technology is taken from [16]. DRAM design estimates for
the next generation Tezzaron Octopus DRAM were obtained
from Tezzaron [14]. Given the available area on the logic die
of the Tezzaron 3D-stack, we are able to fit >400 cores on a
stack. However, the memory interface becomes saturated if
there are > 64 cores in a stack. We are further limited, by the
number of DRAM ports in a stack, to 16 cores per stack un-
less cores share the memory controller. In each 1.5U server,
multiple 3D stacks are used to increase the bandwidth and
density. Once packaged into a 400-pin 21mmx21mm ball
grid array (BGA) package, each stack consumes 441mm?.
Each NIC PHY chip is also 441mm? and contains 2 10GbE
PHYs/chip. If 77% of a 1.5U, 13inx 13in motherboard [27]
is used for Mercury or Iridium stacks and associated PHYSs,
then the server can fit 128 Mercury or Iridium stacks. How-
ever, only 96 Ethernet ports can fit on the back of a 1.5U
server [31]. Therefore, we cap the maximum number of
stacks at 96.

5.6 Density

We define density to be the amount of DRAM that we can fit
in the system. We then maximize density within three con-
straining factors: power, area, and network connections. As
more cores are added to the system, the power requirement
for both core power and DRAM bandwidth will increase, be-
cause of this there is a tradeoff between throughput and den-
sity. Each stack can fit 4GB of DRAM or 19.8GB of Flash
and each server can fit up to 128 3D stacks, which gives
a maximum density of 512GB of DRAM for Mercury or
2.4TB of Flash for Iridium. Each server can fit a maximum
of 96 network connections, capping the number of stacks to
96 and density to 384GB of DRAM for Mercury or 1.9TB
of Flash for Iridium.
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Figure 4: Components of GET and PUT requests.

6. Results

We evaluate several different 3D-stacked server configura-
tions, which are differentiated based on the number (and
type) of cores per stack, and on the type of memory used.
DRAM-based configurations we call Mercury, while Flash-
based configurations are called Iridium (because Iridium is
more dense).

6.1 Request Breakdown

We first explore the different components of GET and PUT
requests. Figure 4 shows a breakdown of execution time for
both GET and PUT requests; execution is broken down into
three components: hash computation time (Hash Computa-
tion), the time in metadata processing to find the memory
location of the data (Memcached), and time spent in the net-
work stack and data transfer (Network Stack). These exper-
iments were run using a single A15 @1GHz, with a 2MB
L2 cache, and DRAM with a latency of 10ns. We ran these
experiments for various configurations, however the results
were similar.

6.1.1 GET and PUT requests

Figure 4a shows the breakdown of execution during a GET
request. For requests up to 4KB roughly 10% of time is
spent in Memcached, 2-3% is spend in hash computation,
and a vast majority of the time (87%) is spent in the network
stack. At higher request sizes nearly all of the time is spent in
the network stack, which is in agreement with prior research
[29].

Figure 4b shows the breakdown of execution during a
PUT request. As expected, hash computation takes up the
same amount of time for a PUT request as it does for a
GET request, however it represents a much smaller portion
of the time: only around 1%. Also as expected, Memcached
metadata manipulation takes up more computation for a
PUT request: up to 30% in some cases. Network processing
is still the largest component at nearly 70% for some request
sizes.
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Because the network stack takes up a significant portion
of the time, utilizing aggressive out-of-order cores is ineffi-
cient. As we will demonstrate, by closely integrating mem-
ory with many low-power cores, we can achieve a high-level
of throughput much more efficiently than traditional servers.

6.2 3D-Stack Memory Access Latency Sensitivity

While the focus of this work is on improving density for
Memcached servers, this cannot be provided at the expense
of latencies that would violate the SLA. To explore the ef-
fect memory latency and CPU performance have on overall
request RTT we measure the average TPS, which is the in-
verse of the average RTT for single-core Mercury and Irid-
ium stacks. The lower the RTT the higher the TPS, thus a
higher TPS indicates better overall performance for individ-
ual requests.

Figure 5 shows the TPS sensitivity to memory latency,
with respect to GET/PUT request size, for a Mercury-1
stack. We evaluate a Mercury-1 stack for an A15 and an
A7, both with and without an L2 cache. We also explored
using an A15 @1.5GHz, which is the current frequency limit
of the A15, however we do not report these results because
they are nearly identical to an A15 @1GHz. For each con-
figuration we sweep across memory latencies of 10, 30, 50,
and 100ns. Similarly, figure 6 demonstrates the throughput
sensitivity to memory latency for an Iridium-1 stack. For
Iridium-1 we sweep across Flash read latencies of 10 and
20us; write latency is kept at 200 us.

Figures 5a and 5b show the average TPS for an Al5-
based Mercury-1 stack with and without an L2 cache respec-
tively. As can be seen, at a latency of 10ns the L2 provides no
benefit, and may hinder performance. Because the DRAM is
much faster than the core, the additional latency of a cache
lookup, which typically has poor hit rates, degrades the av-
erage TPS. However, at the higher DRAM latencies the L2
cache significantly improves performance; while the stored
values are typically not resident in the L2 cache, instructions
and other metadata benefit from an L2 cache.

Similarly, figures 5c and 5d report average TPS for an
A7-based Mercury-1 stack with and without and L2 cache.
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Figure 6: Transactions per second for a Iridium-1 stack for the different CPU configurations and Flash latency.

Because of the less aggressive core, the L2 cache makes
less of a difference for an A7-based Mercury-1 stack. The
Al5-based Mercury-1 stack significantly outperforms an
A7-based Mercury-1 stack by about 3x at the lower request
sizes. If the L2 cache is removed, the A15 only outperforms
the A7 by 1-2x at the lower request sizes.

Finally, figure 6 reports the average TPS for an Iridium-1
stack. Because of the relatively slow read and write latencies
of Flash, an L2 cache is crucial for performance; removing
the L2 cache yields average an average TPS below 100 for
both the A7 and A15, which is not acceptable. However, with
an L2 cache both the A15 and A7 can sustain an average
of several thousand TPS for GET requests, with a bulk of
the requests being serviced under 1ms. For PUT requests the
average TPS is below 1,000, however GET requests have
been shown to make up a bulk of the requests for typical
Memcached applications [3]. Because of Flash’s relatively
slow speed, the A15 outperforms an A7 by around 25% on
average.

These results demonstrate the tradeoff between core and
memory speed and performance. If very low response time is
required for individual requests, faster memory and cores are
desired. If, however, throughput and density are first-class
constraints, then less aggressive cores and memory may be
used without violating the SLA; as we will show in the next
sections, density and efficiency may be vastly improved.

6.3 Density and Throughput

We define the density of a stack to be the total amount of
memory it contains. Figure 7 illustrates the tradeoff between
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density and total throughput for different Mercury and Irid-
ium configurations. Throughput is measured as the average
TPS for 64B GET requests; prior works have shown that
small GET requests are the most frequent requests in Mem-
cached applications, and base their evaluations on such re-
quests [3, 43]. Each configuration is labelled Mercury-n or
Iridium-n, where n is the number of cores per stack. For all
Mercury configurations we use a DRAM latency of 10ns,
and for all Iridium configurations we use Flash read and
write latencies of 10 and 200us respectively. In each config-
uration the core contains a 2MB L2 cache. Table 3 lists the
details of each separate Mercury and Iridium configuration.

The core power (listed in table 1) is the limiting factor
when determining how many total stacks our server archi-
tecture can support. As figure 7 shows, the A15’s higher
power consumption severely limits the number of stacks that
can fit into our power budget. At 8 cores per stack we see a
sharp decline in density, while performance levels off. The
Al1S5’s peak efficiency comes at 1GHz for both Mercury-8
and Iridium-8 stacks, where we are able to fit 75 stacks (600
cores) and 90 stacks (720 cores) respectively; Mercury-8
can sustain an average of 17.29 million TPS with 300GB
of memory, while Iridium-8 can sustain an average of 5.45
million TPS with approximately 2TB of memory.

The A7’s relatively low power allows us to fit nearly
the maximum number of stacks into our server, even at
32 cores per stack. Because of this, the A7-based Mercury
and Iridium designs are able to provide significantly higher
performance and density than their A15-based counterparts.
Mercury-32 can sustain an average TPS of 32.7 million with
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Figure 8: Power and throughput for Mercury and Iridium stacks servicing 64B GET requests.

372GB of memory, while Iridium-32 can sustain an average
TPS of 16.48 with approximately 2TB of memory.

The A7 provides the most efficient implementation for
both Mercury and Iridium stacks, however Mercury-32
provides around 2x more throughput when compared to
Iridium-32; Iridium-32, on the other hand, provides nearly
5x more density. If performance is a primary concern
Mercury-32 is the best choice. If high density is needed,
Iridium-32 provides the most memory and is still able to
satisfy the SLA requirements.

6.4 Power and Throughput

The power and throughput tradeoff is shown in figure 8.
Again, we measure the throughput of our system while ser-
vicing 64B GET requests. Because we are limited to a max-
imum of 96 stacks for a single server, the configurations that
contain 1, 2, or 4 cores are well under our maximum power
budget of 750W, however as we add more cores per stack
we come close to saturating our power budget. As power
becomes a constraint, the number of stacks we are able to
fit into our power budget is reduced. Thus, there is a trade-
off between total throughput and overall power. We seek to
maximize throughput while staying within our power bud-
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get, therefore we always opt for a system with the maximum
number of stacks if possible.

Figure 8a shows that, for Mercury, the A15’s power
quickly becomes prohibitive, limiting the number of cores
we can fit into a server given our 750W power budget. The
best A15 configuration is a Mercury-16 system that uses
AlS5s @1GHz. An average of 19.36 million TPS can be
sustained at a power of 678 W. The max throughput for a
Mercury-32 system using A15s @1GHz uses slightly less
power than the Mercury-16 system, while delivering nearly
the same throughput, because less stacks are used. Using
A7s we are able to fit nearly the maximum number of stacks,
while staying well below our power budget. A Mercury-32
system using A7s is the most efficient design, delivering
32.7 million TPS at a power of 597W.

For Iridium, the A15 is even less efficient, as seen in fig-
ure 8b—the A15’s extra power does not help performance
because it often waits on memory. The throughput for an
A7-based Iridium-32 system is half that of an A7-based
Mercury-32 system at roughly the same power budget. How-
ever, as noted above the Iridium-32 system provides 5x
more density. The power of Iridium is slightly higher than
Mercury because the relatively low power of Flash allows
for more stacks.



| Mercury Iridium Il Memcached || TSSP
Version [ n=8 n=16 n=32 [ n=8 n=16 n=32 “ 1.4 1.6 Bags “ —

z Stacks 96 96 93 96 96 96 1 1 1 1
3 Cores 768 1,536 2,976 768 1,536 3,072 6 4 16 1
& Memory(GB) 384 384 372 | 1,901 1,901 1,901 12 128 128 8
A Power(W) 309 410 597 309 410 611 143 159 285 16
é TPS(millions) 8.44 16.88 32.70 4.12 8.24 16.49 0.41 0.52 3.15 0.28
5 TPS(thousands)/Watt | 27.33  41.21 5477 | 13.35 20.13 2698 29 329 11.1 17.6
= TPS(thousands)/GB 2198 4396 8791 2.17 434 8.67 342 4.1 24.6 353
A Bandwidth(GB/s) 0.54 1.08 2.09 0.26 0.53 1.06 0.03  0.03 0.20 0.04
=]
wy

Table 4: Comparison of A7-based Mercury and Iridium to prior art. We compare several versions of Mercury and Iridium (recall n is
the number of cores per stack) to different versions of Memcached running on a state-of-the-art server, as well as TSSP. The bold values
represent the highest density (GB), efficiency (TPS/W), and accessibility (TPS/GB).

6.5 Cooling

The TDP of a Mercury-32 server is 597W (the same as
today’s 1.5U systems) and is spread across all 96 stacks; in
contrast to a conventional server design where all the power
is concentrated on a few chips. This yields a TDP for an
individual stack of 6.2W. Thus, we expect the power of each
Mercury chip to be within the capabilities of passive cooling,
and an active fan in the 1.5U box can be used to extract
the heat. Prior work on the thermal characterization of cloud
workloads also supports this notion [33].

6.6 Comparison to Prior Work

To gauge the performance of Mercury and Iridium we com-
pare their efficiency, density, and performance to modern
versions of Memcached running on a state-of-the-art server.
Table 4 lists the pertinent metrics for the best performing
Mercury and Iridium configurations, and compares them to
prior art. As can be seen in this table both Mercury and
Iridium provide more throughput, 10x and 5.2 more than
Bags respectively, primarily due to the massive number of
cores they can support. At the same time, the use of low-
power cores and integrated memory provides greater effi-
ciency: 4.9x higher TPS/W for Mercury and 2.4 x more for
Iridium. Because of the speed of memory used in Mercury
systems, it can even make better use of its density yielding an
average TPS/GB that is 3.4 x higher than Bags. Iridium has
2.8x less TPS/GB on average due to its much higher den-
sity. Overall, Mercury and Iridium provide 2.9 x and 14.8 x
more density on average, while still servicing a majority of
requests within the sub-millisecond range.

The table also reports the same metrics for TSSP, which
is an accelerator for Memcached. While this work aims to
improve the efficiency of Memcached by using specialized
hardware, the 3D-stacked Mercury and Iridium architectures
are able to provide 3x and 1.5x more TPS/W respectively.

7. Conclusion

Distributed, in-memory key-value stores, such as Mem-
cached, are so widely used by many large web companies
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that approximately 25% of their servers are devoted solely
to key-value stores. Data centers are expensive, a fact which
requires that each unit be used as efficiently as possible.
While previous works have recognized the importance of
key-value stores, and the fact that they are inefficient when
run on commodity hardware, the approach has typically been
to try to improve the performance and efficiency of existing
server systems.

In this work we propose using state-of-the-art 3D stack-
ing techniques to develop two highly-integrated server ar-
chitectures that are not only able to allow low-power, em-
bedded CPUs to be used without sacrificing bandwidth and
performance, but are also able to drastically improve den-
sity. This is a crucial component to keeping the cost of own-
ership for data centers down. Through our detailed simula-
tions, we show that, by using 3D stacked DRAM (Mercury),
density may be improved by 2.9, efficiency by 4.9x, TPS
by 10x, and TPS/GB by 3.5 x over a current state-of-the-art
server running an optimized version of Memcached. By re-
placing the DRAM with Flash our Iridium architecture can
service moderate to low request rate servers with even bet-
ter density while maintaining SLA requirements for the bulk
of requests. Iridium improves density by 14 x, efficiency by
2.4x, TPS by 5.2x, with only a 2.8 x reduction in TPS/GB
compared to current Memcached servers.
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